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I?RINCIPAL EE’E’ECTS 03’ AXIAL LOAD ON MOUENT-DISTRIBWION

ANALYSIS 03’ RIGID STRUC!T!URES*

B7 Benjamin Wylie James

SUMMARY

This thesis presents the method of moment distribu-
tion modified to include the effect of axial load upon the
bending moments. This modification makes it possible to
analyze accurately complex structures, such as rigid fuse-
lage trusses, that heretofore had to be analyzed by approx-
imate formulas and empirtoa3 rules. The method is simple
eriough to be practicable even for very com~lex s%rueturesl
aad it gives a means of analysis for continuous beams that
ie sinpler than the extended three-moment equation now in
common uses

When the effect of axial load is included, it is
found that the basic principles of moment distribution re-
main unchanged, the only difference being that the factors
used, instead of being constants for a given uamber, be-
come functions of the axial load. Formulas have been de-
veloped for these factors, and ourves plotted so that
their application requires no more work than moment dis-
tribution without axial load. Simple problems have been
included to Illustrate the use of the curves,

Y
Zl#TRODUCTION

l?ho importance of saving weight in airplane struc-
tures makes it necessary accurately to consider the sec-
ondary moments caused by the combination of axial load and

b lateral deflection. Formulas considering the secondary
moments in the case of Continuous beams are quite familiar
-——.———. ——

●
☛

Thesis submitted. in partial fulfillment of the requirem-
ents for the degree of Engineer in Mechanical Engineer-
ing Aeronautics, Stanford University.
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to the a6Fonaut Zeal ~ilgineer,
..—.-.—
They wer”e-or~g~nally d&= ““ ““

rtved by M&ller*Breslau and have been .extended by Pro fe6-
sor J. S, Newell and presented in chapter XI of reference
1. However, no similar practical method has been hitherto
~~ai:Lable for thO. &n@lysif3 of oomple% rigt.d frames when
the members are subjected to axial “load,

. . ...

Before the me~ho~ of moment di.stri?mtio~..was developed,
-!-

rigld frame analysis presented a very difficult problem-
In building design it was the usual practice to use approx-
imate formulas, necessitating very conservative a89umption8
for the sake of-safety. Least work, slope deflection, and
ot-hezmsimilar methods based on the principle of consistent
defozirnations, but ne~lec~~ug the secondary moments due to
axial. load, wqre. used when tt wa~ .nec~ssary to get a more

Thqse mqthod.s.aE.L tgvo~vc! the RQIUtiQnaccurate.. s9.lUti031.0.,
03? simultaneous equations, however, and when thelegrae of
redux!dancy is high, the number of equations invo2ved ne-
cessitate.e ver~ “f~e,diouscomputations. AS these mqthods.
are too compiex~for pra-ctical u.se$ it WOMld hqr?ly..be..worth
whilcl to,“complic&t6 the-m “further by including the effects
of axial load. .Eowever, the development of moment distri-
bution in” the last few years has given a means of rigid
building frame analysis that is simple enough to Ye prac-
tical,le for complex as well as simple structures. If this
cOUldj~.be combined “with Newell~s equatious, without an ex-
cessive sacrifice o“f simplicity, tie result would be vory
valuable to the aer”onautiotil engi.nisr.. This thesis is the
record of what is believed ton be. a ,sati.~f.~ct~ry and prac-
tical.,solutio~. Of the, problem of .com~fning these two meth-
.Qd,sox Wmlys%se

As th”e~~w~ll f&mtil&s have ’~eeg used ~y’-aer~nau(l”cal
-..—-_ .——..

engineers for” s“everal”-years, it will be assumed that the
reader is familiar with their uaej they will not be di~-
cussed here. The method of moment distribution is rela~
tively netv, however, and there bas been very little stand-
ardization of nomenclature and sign co.nventioa~ I!’orth$s
reason a brief review Of the basic princi~la~ will be given~

-. . - .. ..! .-..—— :.-

lHO)&ent~d~8tribution ~as fipS.~_presen~ed hy Professofi
Hardy::.Cro”~~.~~a~””a-~t-jcie Aititzed IiAnalysis of Continuous
Frames “by Distributing Fixe&End ~Joments~i, published In
the MhY-”19’30 Issue of the proceedings of the ASS,C!E, The
article has bees reprinted, together with all the discus-
sion that followed as- reference 2* Professor Gross has
also :1.ncluded& thorough discussion of the method $n ref-
erence 30
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I

+
Considerable interest has been attractea by the sim--

plicity of the method with the result that several arti-
oles have been written for the purpose of presenting brief-
ly its more important elementsO A paper by Harry A. Wil-
liams (reference 4) presented as a thesis at Stanford Uni-
versity (later modified as reference 5), gi,ves a very clear
presentation of the fundamental principles and includes
numerous examples that aid in understanding the application
of the metho~s A brief discussion is presented by E. F.
Bruhn (reference 6) in Aviation Engineering of March 1933,
None of these papers, however, considers the effect upon
the bendi~g moments when axial load i,spresent in the mem-
bers of the frame-

The fundamental principle of the method of moment
distributio~ is the assumption that at first a fictitious
condition exists in the structure; this condition is then
modified, step by step, until the condition that actually
exists is reached- The initial” fictitious condition is
that all the joints of the structure are rigidly fixed
against rotation, or lllocked,li In this condition the ex-
ternal loads create easily computed bending moments at the
ends of each span that is transversely loaded~ The alge-
braic sum of a~l these I’fixed-end moments ‘iat any joint
constitutes an unbalanced moment that tends to rotate that
joint, Under the hypothetical assumption that all the
joints are l~locked,‘[however, no rotation actually takes
place. One of the joints is now assumed ‘funlockedll and
allowed to rotate under the influence of its unbalanced
moment until a resisting moment is Milt up that brings
the joint into equilibrium. The effect of this balancing
moment upon the stresses of the member is computed., and
the joist iS !~locked~i agains

When a joint is unlooked, there are two distinct ef-
fects upon the structure. First a moment equal and oppo-
site to the unbalanced moment at the joint is added. Phy S-
ically this moment is created by the resistance to rota-
tion of each member coming into the jointc Thus each mem-
beb contributes a part of this resisting moment and, as
all the members rotate through the same angles it has been
shown that the contribution of each member is directly
proportional to its ‘Stiffness factor.’! I?or a member with
constant moment of inertia and without axial load this
stiffness facto? 5s equal %0 EI/Ls

The second effect of unlocking a joint is the addi-
tion of a moment at the far end of each member. Assuming
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p~sitive moments as those ~cting on the end of .~ mepber in
a clockwise direc”tlon$ the con~ention that will be used
throughout this paper, this moment is of the same sign and
equal “bg..t.h~.rnwen.tafi–We. war e.w~ E$rneQQ.L2aHw~ver
faoto2?Di~ For members with constant moment of inertia and
no axial load, the carry-over factor is 0.5*

The process of unlooking and locking the ~oints, ono
qt a time, is continued until all the Join%s have been un-
~ock~dr balanced, locked again, and the carryover moments
recordlsdc As each jointis unlocked, thg e~ffg.~$on the
tending moments of the stiucture is computed, It will now
be fou~~d that some OS the joints that have %een balanced
and ~*el.ocked have become unbalanced agaiti, due to the car-
ry-ove:~ moments from other joints, The ~rocess must there- _
fore %13 repeated, “these jti”i~tsbeing balanced again and

—..—-.....— ..

new carry-over moments recorded,” This procedure is con-
tinued until the unbalanced moments and carry~ovgr moments
are s~all enough to be neglected- If all ~he joipte are
now unlocked simultaneously, the effect on the bending mo-
ments of the structure will be negligible! The. moments at
the ends of the rnemlers, therefore, are th6_same as those
that would have existed if”the structure had “been allowed

.—-.

to dof:.ect directly, instead of step by step. These mo-
ments may ‘be found by totaltng the fixpd-meqd .rng~ent~l t,hh?
moments distrib’izte’dtb “ihe ‘member e-ach time-the j-oiht“was
unlockod, and the moments carried over to that end from the
other c~~d of the mombey~ .I.~iS ad, n.ecessar~ t~.con!.!n.q?
the prc)cess ‘u’tit~l--th~-uni~lanced mome~t”~%o~plete~y disap-
pear. The .qperations may be~toppe.d.qn~.~.k~ rn~.~en}~.-to-.
taled wheneve”r “the des~~ed degree of accuracy, as indicat- -
ed by tho magnitude of the unbalanced mom~nts~ is reachedo
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When axial load, either tension or compressions iS
present in the members of a frame, the secondary moments
~ue to “the combinatj.on of axial l~a”d and “d”8flection alter ,

the fundamental method of noment distribu$ioti”to no grO&t-
er degree than the ord~nary three~momeu% equation is mOdi-

fied in the extended oq~ation. The distribution factors~
carryover factors, and fixed~end momqqts, instead of being
constant for a given member, become functions of L/j.

The principal purpose of this thesis “is to develop a
●

method of rigid frame ~nalyais that combines Newell!s for-
mulas with the Hardy cr~~s method, and present it in a
form that may be easily used by the engineer. In so doing

●

the following steps have been taken:
.- -- ....----- ..”..-” ------------.......... ,.....~-.:-.. .:-=+- ---:. --_
,—.— i. .....:
.— -.. —
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1,

2*

3.

4.

5.

The formulas for carry-over factor, stiffness
factor, and fixed-end moments in terms of
L/j have been derived,

A method of considering joint translation-has -
been developed.,

Curves have been plotted to make the use of the
formulas practical

Simple numerical examples have been given to il-
lustrate the use of the curves and show how
the method may he used as a simplification of
the extended three-moment equation.

An example of an airplane fuselage, the mem%ers of
whic~ are suhject~d to both transverse and ax-
ial loads, has been given to show how the meth-
od may he applied to complex structures that
heretofore have been impossible to analyze ac-
curately.

When applying the method to a~ actual problem, the
first values that are used are the fixed-end moments, next
the stiffness, or distribution factors, of the members, and
finally the carry-over factors. It might seem more logical
to develop the formulas for these quantities in this order;
however, the derivations are stmpler if they are treatea in
the opposite order. !lhis procedure should offer no confu-
sion to anyone familiar with the principles of moment dis=
trilnztion.

In the development of the formulas, the same general
methods of yroceilure are followed as were used. by Profes-
sor Cross in his original derivations excepti that the efe
feet of axial load has been inclutied.

The writer wishes to express his thanks to professor
A. S. ?files for suggesting the subject and for his h6Sp-
ful advice and valuable assistance in the d.eve20pment of
the thesis,

CARRY-OVER FACTOR

Assume a beam as shown in figure 1, rigidly supported
at B and pinned at A. A is free to rotate, but re-
strained from transverse motion. The axial load P is
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assumed as compression, With a.~giv~~ moment MA applied

at A, It is d&s~red to find th~ &g~~t~d~ of the=e-” ““
sisting moment at B, IdB,

ThiEI problem is most readily ~olved by the””uso of the
extended three-mo-ment equation, Atisume tho beam consists
of two spans: Tho left sman A3 iu of length L, and tho
right ljp~n has zero lengt~o* Then using th~ three-moment
equation:

“-[+;+$$];””L:+= O””:”’
,.lZIL1al- ; pl..__
= IL

+ 2Ida

M.l =- MA ‘“
.. ...:-. ..: !.

Ma”” = .M~

P .0.2= ..—
.-

ip!!-@+ 2 MB (y”
““x

+0)+0=0 ...-. .....
or ]?iA~+ ~ hiB~ = O

itB= - -a-“MA
2$

.-

. ;-

(1)..

——

.-

11, should be noted that all moments havo ~eenassurned
posi.tii% when causing compression in the up”per fibers of
the l.mcm. This is the sign convention used in the three-
monent equation. As the convention used for moment distri-
bution assumes that positive moments aro those acting On a
%Aan ir,a clo&wisO direction, t~g -sign 0f=.7MA is the samo
for %oth systems, Howeverl when MB is positive ~~ one=

system;- It ik negative in the other. H&nce usi~g tho ~o-
nent dtstribut-ion convention of dgp~t eq~qtgp~.(1]. be-
comes: -L - - :----- ------

._——

(2)
..—..--.—,-——-_ ..-—.——. ——-—
*It is dtimons~mQn “~~0 62 of refirenci’ ””l”tliai”ifone “-
end of a meilbetiwithout axial load is rigidly fixed against
rotation, the momeut at that end ~y be found by usj.ng the
three-moment egua~ionl .yithzero length of one of th~ spans,
‘#hen axial load i,s pres-ent in the members the same li,ae of
reasoning may .be followed, showing that the extended threo-

., ---.-=
:3

.. . . . .
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moment equation may be -used to f$gd:t.h-?-u~m~nt.x.,%~=.<~~d~:.-=a. -* .-..:.-
end. .,-. ..-..-“-
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21xpr8s,sed iriwords, this equation states that when a
moment M~ is applied at A, a moment equal to (cX/2~)lAA
is built up at B, Thus the carry-over factor of a mem-
ber rotatea at one end and rigidly supported at the other
is a/2 @, This expression ts plotted against L/j in
graph 1. It is evident that when #=o, the condition

d
when no axial load. exists, the carry-over factor is O-5,
agreeing with the usual factor of the Hardy Cross mothod~

When the axial load is tension, the carry-over fac-
tor becomes ah/2 ~h, which should be apparent from the
similarity of the three-moment equations for compression
and tension, The derivation is similar to that for com-
pression, the hyperbolic functions being substitutes for
the circular, The derivation is given In the Appendix,
and the equation is plotted in graph I along wtth the
curve for compression.

In the Appendix is gtven a second -proof of equation
(2). Insteal of using the extended three-moment equation,
the more basic principle of momeat areas is employed,

STIFFNESS FACTOR

In the last section it has %een shown that M3 =
- (a/2~)MA, using the sign oonventton of the precise equa-
tions as given in reference 1. Considering positive rota-
tions as clockwise, the angle through which point A ro-
tates is the negative of the slope at
cnzla on page 201 of reference 1.

Ly.Ma-Ml L
I&-Ml Cos ~

9“.OA=+=. ~ y-
j sin $

A as given by for-

where b!i = hiA

Ma =MB=-–~MA
2$

x = o
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.’.[ .. .~[-~$)MA-MA M* $--1- MA CO. ~
‘A = “~

—....—
i

1

-+——— —
~

i;, j sin ~.. .. .... .. .
‘t . . . . . -.

.=-.

“.[
II q

“-”M& a Ct3C -
J L ~+$

=.- ~..
—-Z$—”+ cot y “ -7—

1

~.- ;&-_“.- .,. .,Sti
.....’ ,.” —.:-: ~: ‘=-

,.. -a
. . . . :- -

--
----- ..—

.

*

From tho equht ions on page 212 of reference ~, th&
—.<

values o“f ~
.-

cot
J

and Csc ~ have leen found in terms of

a and ~
.-

and substituted $n.th$s expression? giving:
.- .

—

or

.,[ J
MAL .&-1

= ..@y p . ._F

“3EI 9A I 3p
MA =

( )
——- . 4E .fjA _ _—-

L(p - & L4~2-$

-
Wliin a joint of a“ rigid structure 3.s rotated, a$l t-l]e““”” ““ -

members corniug into the joint rotate through the same an-
gle. He.nc.e eA is the same for all the members, Assum-
ing homogeneity of material, E is also the same for all
mernler13. Heace the moment required to rotate a Joint is .

divided among all the members in proportion. to the. .K...val-
ues of~–tich member, where

,. .*
.

.$
3p

K =_: —–-—~)
Pa-a

(3)

The expression
4p’ 3%

will be called the l!stiff-

ness-ff?~ctor coefficient!’ and is plotted against IL/j. in
graph 11, To find the stiffnesg factor for a given member,

●

determine the coef3?icient for the appropriate value of
T./j from the curve and multiply ’by I/L of the member.. ,

When ~!= O, the condition of no axial load, the coeffi,=
,

cient 1,s”1.0, giving a stiffness factor of I/L,
.%—. .- -..—
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In case a joint of a structure is pinned, and it is
thus known that the final moment at the ends of all mem-
bers joining there must equal zero? it is a waste of time
to alternately lock and unlook the joints A more direct
method is to treat this type of member as a speciaZ cases
unlocking it after the first cycle and leaving it unlocked
thereafter. (Unless the mem%er has no fixed-end moments,
it must be considered locked during the firs% cycle, or the
fixed-end moment formulas would have to be modified, a com-
plication that is not justified.)

>
Once a pinned joint is unlocked ana left tinlocked, it

need -not be considered further in the computations as it
is bala~ced$ and mo moments can be carried over to it, for
it is incapable of developing a resisting moment when the
far ead is rotated- This means that when one end of a
member. is,pinned, the carry-over factor to that pinned
joint is-zero.

It requires a smaller moment to rotate one end of a
member through a given angle if the far end of that member
is pinned than if it is fixed. Hence the stiffness faotor
of a mem%er with one end pinned is less than it would he
if that end were fixed. Consequently, the formula fcr
stiffness factor (equation (3)) does not apply when one
ead of the beam is pinned, and a different formula mizst be
developed. When finding the value of $A in the deriva-
tion of equation (3), it was assumed that the far end cf.
the member 3 was rigidly supported, and hence that

M~=- ()~~MA. In case the far end is pinned, ~~B = O

and the derivation is

[

eA=-~ ‘~~+

r

accordingly modified:
.— .-

144

[

L
cot - - $.

- PJ J~

L -1

x~ = 423 ~A ~
()L$

The term 4E eA is the same for all members coming

into the joint, whether fixed or pinmed at the far end,
and so the stiffness factor of a member whose far end i“s
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pfnnetl. %_ecomes: — —.

(4)

,. . “...:- .-
-.

‘he coefficient“Z3Fhas been plotted in graph S1

along, with the coefficient of members with the far end

r-.

fixed. When ~ = O, ~ = 3
1 and &=z’

giving ‘a sttff-

~ 1
.. . ..- .. . ..

ness faqtor of * z -,
L

which agrees wtth the factor used

for this type of member when axial load “is nqgZ_ected~

When th”e“ax$al load is tensiin, the der”iva:~ion of the
formulas is similar, the only difference being the subeti-
tutio~ of the hyperbotio funoti.ons for the circular, The
stiffness faotors for the two cases are therefore:,....=?.=+...., -i.+--.-. ..

(5)

for far-end pinned,

These Expressions have also been plotted in graph 11,

(6)

..
I:a th”e Appendix the formulas for Stiffness factor are

derived %y the method of’ moment-areas. As a f~rth~r check

.. ..-.-
*

the sPecial case of a two-span beam rigidly supported at
both e:~ds and fiae” to ~O~”ate at the center support, with
an external moment applied at—the center support, is sol~~d
by the exteuded three-moment
vision of moment between the
mulas :~derived above~-.. ;.:%,-,7 FIXED-END

i- ....

equation8 Sol;ing for the di-
two spans gives the same for-

. =U+:..,.m: .+-—- .— .-

MOWNY s
._..H

..%:.. .-;..=:.:;--.-~------ —.—> .-,..----< -r... .-—=
v “:,.:” -. +~

.—
A fixed-end mome~t is the moment that exists at t-he

ends of a loaded rnem’berwhen those ends are rigidly fixed
against rotation. The most important loading conditions
are: .ur~iformly distributed load over all or part of the
span, uniformly varying load, and a concentrated load at
any point on the span. The formulas for these conditions
are developed in this paper and~ as the principle of supor--. ---- -.,. ...-

.; :,..... .>.:... . .._

,

-.
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position applies,* the fixed-end moments due to any combi-
nation of these loads may be found by adding the moments
due to the separate loaas,

The extended three-moment equation is used in deriv-
ing the equations for fixed-end moments. A beam of three
spans 3.s considered, the two end spans being of zero length,
and the equations solved for the moments over the two inner
sup~orts, These moments are the desired. fixed-end moments.

In case the axial load is tension, the derivation of
the formulas is parallel to that for compression, The on-
lY difference is the use of the hyperbolic rather than the
circular functions. The resulting formulas are the same
as those for compression except that sin L/3, cos L/J~
tan L/J, etc. are changed to sinh L/j, cosh L/j, tanh L/j~
etcs~ and a, ~, and y are changed to -a~, -p~, and ‘~h,

respectively**

In all cases the cu~ve for fixed-end moment when the
axial load is tension has been plotted either on the same
sheet as the curve for axial compression or on the next
following sheet.

●

*I% is shown on pages 199 and 209 of reference 1 thatl as
long as the axial load remains constant, the total moment
at any point on a beam is given by adding the separate mo-
ments of all the individual transverse loads on the beam-
It is only when the axial load is varied that the principle
of superposition does not apply.

<

~

J
csch - - 1

)Sk.- . ~~**The fOrmUla fOr ah is: ah ~ - ‘——

()
L
51

may be seen that this fornula is the same as that for cc
as given on page 212 of reference 1 except that csa L/j
has been changed to csch L/j, and the formula preceded
by a minus sign, Consequently, in substituting for U in
any formula when changing to the hyperbolic form, it is
necessary to use ‘%” The same is true of the formulas

for @h and yhm
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In figlire 2 ‘is shown a beam rigidly su>ported at A
and 3 and suhjacted to a uniformly distributed load of
w poun.a_per inch. The extended three-moment equation for
s~atis .l*.2.and”2-3.ig:.— —. .—

------4’,,~* .,.=.=,,..

~, ----—..,. .. ; .:!

----- ..—

Lz
.,.-.:”,-*.::.;,

=L== o”,”..- J.. -

.J2”= L
..—. .

this %ecornos
.-

2~A L~ V& y.— -MB La= ~
,- . . ,,=... ..

;.
Similarly, using spans 2-3 aad 3-4:

. .

‘-~.

..E
=

. .

.— MA La -
wL3y‘~M3 L~ n ~

.
— -—-- --=-

.- .. .- . . ... .. L7 --.,- :-:-

Solving; ‘these tWO ‘simu~tane~’u~ e“~uations: ‘“’“- - ““’-
.---- ....

—....-
~2

~A=+&= “———

Gm (2P +- ~).-
.-< ------ -. .-

Thbe expression ~(4/Y) (2P + a)~ has been plotted
against .LIJ in graph 111. TO determine the fixed-end
momerit~ for’ a given beam with uniformly distributed load
of w pound per inch, divide WL2 by the coefficient
found in graph 111. When w is an Up load, the left-hand
moment “MA will be positive and the right-hand moment MB
will b~ negatived

:,

#

. . .

::--:
--: :..

..:.....:;,.
,.-.. .....
.. -—,?.,
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It is apparent from the curve that when ~ = O, the

moments are equal to WL2 /12, which is the formula used
when axial load is neglectea, .

lEXAidPLE

Before proceeding to the derivation of the other
fixed-end moment formulas, it seems advisable to give an
example showing the application of the formulas already
developed.

A symmetrical, three-support, continuous beam with
cantilever overhangs will be used. A drawing of the beam
with a uniformly distributes load of 10 pountls per inch
is shown in figure 3. An axial loadLof compression is as-
sumed to be of such maguitude that v = 205 for each of
the spans BC aua CD, J

The first step is to compute the fixed-end moments.
MF3A is the moment created by the cantilever overhang.

~ow = +500.This moment is equal to ‘~ = - ~ As the

load is an up load, a counterclockwise moment at B is
necessary to prevent rotation of AB , Hence the sign is
negative, and M~3A = - 4j500 tn.-lb’ Similarly,

Erom the compression curve of graph III, it is seen

that the fixed~end moment coefficient for
?

= 2s5 iS

equal to 10~69~ Hence the fixed-end moments are:

Next the stiffness factors must be computed. As AB
is a cantilever, ‘BA can never have any value except

-4,500. Hence any unbalanced monent at joint B must be
resisted entirely by 13c● That is, the stiffness factor
of A3= O- Stmilarly, the st3.ffness factor of DE iS
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i.
also zerot Owing to the symmetry of the beam, At is un-
necessary to compute the stiffness factors of 30 and
Cil, as they are obviously equal, and any unbalanced mo-
ment at C will be dtvided equally between CB and (YD*

R’rom graph I it is found that the oarry-over factor
of BC Or C~ is equal to 0.731, For convenience, this
is entarod In figure 4 at the-center of 8ach span.

The values of fixed-end moments are now written dim
rectly below the beam, as in figure 4- It is apparent
that there is an unbalanced moment of 9,355 - 4,500 =
4,855 :Ln,-1%..at Joint B and one” of -4,855 iniM13a at
joint D, Unlocking joint B first, it is necessary to

.-> ::”:-r.=. ,-_—
:=:-. .-
—=
.-

add a balancing momen~ of -4$855 i.n.-l’b- This moment is
all distributed to BC , as the stiffness factor of AB is
zero, A line is drawn under the -4,855 to indicate that
the Joint is in balance, The carry-over moment ofjoint
C may bo recorded now, or this step may be delayed until
after joints C and D have been balanced, and then all of

,

the carry-over moments recorded at once. The latter meth-
od is usually the simpler. Consequently, joint C 5s bal- ●

anced next- As there is no unbalanced moment at this join~,
the bal.anti.ng”mouents will be zero, Joint D is next bal-
anced, a-”morn-eatof 4,855 in,-lb. being distributed to CD
and O in,-lb. to DE ~ . --4

Al,l the joints are now in balanc-e? except for the

carry-cover moments, which s~oul.d now .lm recxo~dgd.~ m. _ ... ..--..-—
-4,855 ifi.-l”bid.istr~’buted to 3C Is carried over as
-4,855 X 0.731 = -3,549 in,-lb. to C. Similarly 3,549
in.-lb, are carried from D to C, The carry-over mo-
ments from O to B and from C. .to D aro zero, as no
moment was distributed at joint 0. .

As the carry-over moments to joint C were equal and
opposite, and as no moments were added to joints 3 or D,
all the jcints are still in balance, Ail. tlxreo joints may
now be unlocked simultaneotisly without any effect upon the
struotvre, as tlier”eare no unbalanced moments at any joint-
The structure is therefore in oquilibriun without tho ne-
cossity of any hypothetically locke& joints? and the mo_ ,

ments at the ends of the members may be found bx totali~.g:. .... .- ...>.r ,----=-- - _ .——

*
MBA = .~4,5uU -...

.. -.

ld~~ = +9,355 - 4,855 = 4S500 in~-lbt
.

—
—

.—
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lq.1~ = -9,355 - 3,549 = -12,904 in--lb.

M~D = +9,355 + 3,549 = 12,904 hs-lbs

zl~~ = -9,355 -!-4’,855 = -4,500 in.-lb.

The extended three-moment equation gives a value for
MC = 12,903 in.-lb.

FIXED-END MOMENTS FOR A UNIFORM VARYING LOAD

A uniformly varying load is shown in figure 5. The
three-moment equations for this loading are:

Solving these for MA and ?I~:

-. —.._ .

The denominators of the right-hand side of these equa-
tions are plotted in graph IV. The corresponding coeffi-
cients for axial teusion are given in graph V.

If the maximua load is at the left end of the beam,
the formulas for MA and M3 are reversed numerically,

although i.n all cases the left-hand moment is po si.tive and
the right hand negative under ~osiiive loads, ”
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ex=-deno~inator 0$ the right-hand side!f!hc
pressio~ has been plotted in graph VI.
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mea
:= ’95’ these equations reduce to those given

for the particular case of the load at ~idspan,

In order to use a larger scale amd hence improve the
accuracy of the readings, the expressions for

have been plotted as the ratio of MA and MB

fixed-end moments that would exist at A and
tively if the axial load were zero.

When there is no axial load, the formulas
end moment for this type of loading are:

Q and h!B

to the

B respeo-

for ftxed-

The curves of graph VII give the ratio CA = XA/HAoe

c& is plotted against a~~, a being ,the distance frou
the left end of the beam to the load. Curves are irawn
for several values of L/j . In order to find. ]JA, the
value of CA must be interpolated between the curves.
Straight-line Interpolation will give a maximum error “of
less than 2 percent, and in most instances the error will “-
be less than 1 percent. If greater accuracy than thts is
necessary, the forcrulas may be used.
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7T.hen CA has been found, MA may be found by the
expression:

8

“a”” -4.—
~ @ @ CA““MA=

—.

,=. ...-..=

TO find the value of UB ,
...

$s”e the &~e curves but
read the value of the coefficient for b/Ji rather than
a/L a13 before- Call this coefficient c~ ● ,. ------:-

3?he:a
-—=-

Fc~r convenience in finding t~-e value~:’~f ~A
:-.9

and UB
after the coefficie~ts CA and CB have been determined,

a curvo of
@ (%)

has been plotted against a/L in

graph l’IiI. ‘To “ffid.the value of (a/L)z(b/L);
.—

use the
same curve but read the value for b/L rather than a/L t
as befc,re~ =,.. .-.... i

lTclrexa@le, suppose it is desiretl to find the. fixedrn *
end mome~%s for a @cam. 100 inches long loaded with 1,090

—

pounds at a point 70 inches from” the left end of the beam,
The beam is shown in figure 8. L/$ is assumed to be 3,8
in coa~ression.

,= —.
.-
.-
.-

,--- ‘:”%)-“? ‘“ im=o’7
— —

.— -.. L..-

. . .
rrou graph VII at - “~ = “0,7: ‘-

m ...

c~..=
.4m0 - 3*8

1.625 - -——
4:0 .- y~6.

(1,625 - 1s406) = la537
.

...” , -.>....”
From gr~ph VII-I ai ~ =

0:7, -@x if & “.:j,::.(IL/ :) = 0.063:
*

● ● ML = 1,000 X 100 X 0a063 X 1,537 = 9$&0 in;~li,
...“-’:=.-.Z..-..—- ..

.,.

.,-
.

;:

., .

—

.,

.=-
4

------..-
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...-..”
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.

,

“’tiro&”gra-ph VII at $ = 0.3:
,..

CB = ls 389 - ~~ (1s389 - 1-260) = 1-337

From graph VIII at ~ = 0.3, @ (:)= 0.14’7:

●

● .M~=- 1,000 X 1,000 X 0s147 X 1,337 = - 19,640 in.-l’b~

YI~ED-E:~D MOMENTS FOR A nIFORM LOAD OVER PART 03’ SPAN

The loading ~s shown in figure 90 The three-moment

equations are:

Solving for MA and MB: .’



.

.,. . . .

N.A, C.A. Technical Note No. 534

.—
,=.—
:-
.-.-

.-

When there

.,:..- . .

is no axial load, the formulas for fixed-
this type of loading are:

a

()[

a a

16 01
- 8;+ 3 %

L) ~
= WL2 CAO

.. ...... .

The curves of graphs IX and X give t~”e ratios
CA = u~lli~o and C3 = ‘@B. plotted agafnst aj~ for

sevaral values of L/j. The curves are plotted- Yron
a/3 = O to a/L = 0.5. To ftnd the fixed-end moments
when “E,L is greater than 0,5, find the fixed-end zaoments
for a uniform load over the entire span and subtract the
fixed-end noments that would be caused by a load over the
part of the .spa~ ~hat_is not load~d.. ——... -

3’or convenience in computation, curves of CAO and

CBO have %een plotted in graph VIII,

As an sraliiple, suppose it is desired to find the
fixed-end moments of a beam such as that shown in figure
104 The span is 100 inches and is loaded uniformly with
10 pou.nds.per inc-h for a distance gf 70 inches? L/j iS
assumed at 3;6 in compre”ssionc

%irst fird the fixed-end noments due to a ‘p”oii.ti%~e
load of 10 pounds per inch uniformly distrtbutet over the
entire ‘span. This moment is found ‘by the use of graph
IIIo

. . —
-.. ... -

.>--—

. ..-.

.

t

.x. ..

..*
-. K-

: -==-.
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—
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MA=-MB=W$= }O(1OOY’
9.11

= 10,980 in,-lbo

Next find the fixed-end moments due to a ne~tive
load of 10 pounds per inch extending over the ~ inches
from C to B. Zn this case the load is on the right
side of the bean, whereas the curves of graphs 1X and X
a~ply to loads extending out from the left side. Hence,
the curves must be reversed and CA used in- f~nding MB
and CB in finding MA.

J?ron graph VIII at ~ = 0.3, CAO = 0.0290

lli~= - mL2. CA CA
o

~rom graph X for

CB = 1,396

From graph 8 for

K~ =’+ WL2 CBO CB

= +10(100) XOc0290Xls18’7 = 3,440 inc-lb~

a–= 0.3, tie fins:
L

~ 0.1=5 (10613 - 1.396) =

g = 0.3, CBOL
= 0.0070

= -lO(lOO)XO .OO7OX1.439

1.439

=. 1,007 in.-lbc

The net moments at A and 3 &ue to the load of 10
pounds per inch extending over 70 percent of the span are:

MA = +10,980 - 1,00’7 = +9,973 ina-lbc

tip = -10,980 + 3,440 = -7,540 in.-lb-

SECOND EXAMPLE 03’ COIW?SNUOUS BEAN ANALYSIS

Yigure 11 shows the left half of a %eam that rests
oa five supports- The bean and loads are symmetrical
about s-apport D. It is assurted t~at there is axial CO*
pression in 3C and CD giving = 3 for both thesey

members. The value of I is cons~ant for the entire beans
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Joint .- may “’b&”as sume”d’‘rj,gi”d~y-f-~xed”a~aknst ro;atfon

.-

and never unlocked, ,as any fixed-end moment or moment be-
ing carried to it is always exactly balanced %y the symmet-
rical moment on the” other half of the be~.m, Hence there
is sever any unbajanoed moment at D, - an-d “n-oneed to un-

look it.
.—

I:z th~p pro~lem tie work has..be,en carried ..to..-c~ “..
greate:r accuracy than necessary in’order to show the agree-
ment with the extended three-moment “equation. The val~es
of stiffness factor, carry-over factor, and fixedwend mo-
ments have been taken from the tables, Where they may be
obtainlsd with more precision than can be read from the
curves s

Y:ron graph I or table B, the carry-over factor for
L3-=
J

is found to be 0-91893. Yrom graph 11 or table ~,

the stiffness factor of BC, which has a pinned end-at B,
is found to be 0.1020.6 and that for CD is 0.,6560.5~
EBncO an? titibalanced mo&ent at C “will be distributed ““
0.1020G/(0.10206 + 0,65605) = 13.462 percent to BC and
86.538 percent to CD* .

.- .. . ..“..

The fixed-end moments are found as follows:.......

M3?3A = +50 x 100 = +5,oOO ins-lb,

‘~rB~ = -500 X 80 X 0.144 X 1.2135 = -6,9’89.8”in.-l-%~

M1?CB = I-50CIX 80 X 0’.096 X 1.2590 = +4,”834a6 ins-lb,

&O(80)aMI!CD = -. 24 560 = -2,60~09 ins-lb,
9 ,. .. . --------

Tho omeratioiis involvod in unlocking aud Iockttig the

-
—

:-.——

-.

‘

.. ,. .3
a—

_ “. .-~

——

..=
,“ . .-

Joints ar.e”i~dicat.ed in figure I-2-..Yi_rs~ t~g.$iz~.!-end
momentls are recorded as shown, Next joint B is balanced
by adding 1$989.8 in.-l%o to Bc , as the stiffness faotor
of the. cantilever is zero. The moment of 1,989.8X0.9Z893=
1,828.5 i.n,-lb. iS immediately ca”rfi”ie”dover to ‘d-“---~oin%O

._

nOW h5 an ~%alanced momen”t of 4T834.6+l$828@ &-2, 60”3”.9-s
4,05’7.2 ing-lb. This momcmt is bilanoed “%Y a momeni of”
-4,057,2 in.-lb, distributed te

.
CB and CD: -4,057.2X

0.13462 = -546~2 in.-lb, .to CB and the retiinde~,
-3,511.0 in.-lb. to CD, As BC is pinned at B, no mo-
ment is carried over to B. However, -3,511aOXOs91893 =
-3,226-4 in--lb. must he carried over to Da All the

.- ——
1— - - j..:, :=:= ,-.— .= —. -..=. —....—.- ..s,.- ..—.
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joints are now fz %alance, joint D being balanced by the
equal and oppos%te moments from the other half of the beam,
and the monent~ at any joint may be found by totalingC

Consi&&ring’ ben&ing moments -positive when the upper
fibers are in compressio~, MB = - 5,000 in.-lbgt Mc =

- 6,116.9 tn.-lb,, and MD = - 522.4 in.-lb. A. solution

by the extended three-moment equation gives values of
-5s000, -6”,116.8, and -522.5 in.-lb. for MB, Mg, and MD,
respectitvelyg

When an unsymmetrical beam of four or more su~ports,
or a symmetrical learn of six or more supports, or a rigid
frame of three or more members is analyzed, the moments
do not %ecome zero after the first cycle, as in the exam-
ple of figure 11, but the process must be repeated until
the unbalanced moments are small enough to neglect.

Zigure 13 shows half of a symmetrical beam resting
on seven supports ana loaded at the end of the cantilever
so that the moment at A = 1,000 ins-lb. , t’he top fibers
being in tension. The spans are equal in length and the
moment of iaqrtia is constant throughout, Axial compres-
sion is assuned of such valne that ~ = 3 for A3, 3C,

and CD. This beam, withoyt axial lo~d, has _been analyzed
in references 4 and 5, and the results will he compared
With those that incl-.zdeaxial load to show the importance
of secondary moments in continuous beams subjected to high
compressive loads. A solution of this problem bY the ex-
tended three-noment equatio~ requires the solution of three
simultaneous equations

The carry-over factor iS 0.9189 for all spans, found
from graph I or ta%le B. The stiffness factor of AB is
found from the ‘lfa~end pinned~ curve of graph II or table
E and is equal to 0.10206. The stiffness fcictors of BC
and CD are found from the mfar-end restrainedtf curve of
graph II or table B and are both equal to 0.65605. At B
the distribution factors are 0s10206/(0,10206 + 0065605) =
13.46 percent to BA and 86.54 percent to BC!● At C
the distribution factors are 50 percent to each menber~
These are designated hy the symbol D and are recorded at
the joints in a space provided as shows in figure 14. The
carry-over factors are indicated by the symbol. C and are
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writton at the center of each member as shown- The only
fixed-end moment is at the cantilever and is equal to
1,000 in.-l-b.

Joint A is balanced first, -liOOO inm~l~-;-be~”rig““-
added to AB, and -l,QOO X 0~9189 = -918.9 in,-lb~ car-
ried over to B. This leaves an unbalanced moment at 3
which is balanced by 918-9 ina-lbo distrihtzted 918.9 X
13.46 :Qercent = 123.’7 in.-lb. to 334 and 795.2 in.-lb-
to BC , As A is a pinned jo%nt, no moment ,can be car-
ried o“t-erto it: but 795.2 X 0“.9189 = ‘730?6 in~-1.b~. mu.fit
be carried over to C, ghis unbalanced moment at c is
balanced %y.-365,3 in,-lb. to both CB and CD ● Carry-
over moments of -365-3 X 0q9189 = -335c? in--l.bo are re-
corded a% 3 and D.

The mornefitat joint D is balanced %F the sinflar
moment from the other half of the beam, but it must be
notioe(l that Joint B is no longer in balance, having had
-335-.7 ine-lb. carried over to it since it was balanced-
This mc~ment must therefore be balanced, the balancing mo-
ment distributed to 3A and BC, the proper moments cap
ried ‘overt and t-he process continued until the desired ac-
curacy is reached- Figure 14 shows the computations car-
ried through nine cycles, and the totals are indicated.
The total after nino more cycles is also recorded, and the
values given by the extended three-moment equation are
given as a check. The values when axial load is aeglected,
as givan by Williams? results, are also recorded- It
should be noted that all the moments except that at the

.

.-

.-

--=-

_.—

,

cantilever are many times as large when axial load. is con-
sidered. eis”+lien 5C is neglected,””

—.““~fi-O-$ea-~~n~o~-+-~-is aw-
_-—

ference is that a high value of L/j was used= If a low
value cf L/j , say 1.0 or 1B5s had been used, the agree-
ment be,tween the two methods would have been muoh better~

.—.- .,

E“Fl%GT 0~ JOINT TRJMi$.3AT10ti ...
i.-.-

.—
Th~ are two” types of joint translation that wil”l be

considered in this paper, In the first type the amount of
translation is known, as on a continuous beam with a kno=
or assumed deflection of oue or more of the supports, In
the seoond type the anoun% of translation is unknown lut
the total shear o~ a given section is known, as On a re~-
tangular %ent su%jected to side loads.

i
=..- ..-
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.

When the amount of deflection is known, formulas for
considering the effect of the deflection upon the noments
of the structure may ?)e derived by the extended three-
monen% equation8 Whea the amount of deflection is unlmown,
a nethod that was developed by Professoa Clyde ~, Morris
of Ohio State University (reference 7), for the case when
axial load is neglected, is modified to include the effect
of axial load.

JOINT T.RA.NSLATION - AMOUNT 03’ TIULNSLATION KNOWN

The translation of one or more joints of a rigid
stmcture modifies tha bending moments throughout~ In
both the basic and extended three-moment equation the ef-
fect of translation of one or more of the supports is de-
termined hy adding deflection terns to the load terms of
the equation- These deflection terms are the same whether
the basic or extended equation is used-

In moment-distrilmtion analysis, defection of the
jofnts creates additional fixed-end moments- Figure 15
shows a heani rigidly supported at both ends- 3 is de-
flected an amount 6 above A. It is desire~ to find
the moments u~ and MB that exist at the ends of th”e
beam. The extended three-~oment equatiOZl fOr SpaZ18 1-2,
and 2-3 is:

Where
I&L= M&=o

Ll=’L==O

-.

this %ecomes:
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Similarl~, using- spans 2-3 and 3-4:

.- . . . ..
?~@ ~ 2~BLP = 6X!a

.,. -—=.———.. —. ..
I I L

.

Solving for”-ld~ “and- MB:, .....’, . .7
.T

~A=MB=w ——
.:(?51- ..9),....... w *-–-

or

.

.“,

--- .=

where ‘-%=””: and R=:“-
. L.-

—.

If the equation is written..-

(7)

then :R is po”sitive when the deflection is such that the
aenber is rotated in a clockwise direction from its orig-
inal Iacation O The fixed-end mom~nts”due to Jo-int ‘deflec-
tion have the same sign at both ends of the span, %oth
having the sign opposite to that of R. The quantity
2p-a $n equatioa (7) is a function of L/j and has
been plotted in graph X:.

.- =. ..=
.r= .—a-:-

3XAU:FLE 03’ CONTINUOUS 3EAY WITE DEFLECT1ON OF Sti”PORT”S ‘-
.

i. . -.— ..ri. .- ..

Figure 11 show~ the left halfo’f a symmetrical con=
tiauous beam resting on five supports. This problem was
previo.~sLy analyzed assuming no deflection of the supports.
This sane beam will now be considered assuming that sup-
port IS deflects 0.8 inch downward, I is constant at
0.2 in,~ , z = 29,000,000 lb./sq.in,, and L/j is assumed
equal .Lo.3@O~ as...~fQr_9_a.a. -. -.

.s..
.

—

K = ~= ‘~. (3at)025
.L

for both BC and CD, As the

deflection of joint C tends to rotate 3C in--a clockwise
.- ,.

.: .. .-
. .. .- .: .,

.
-. ......-.
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~-..;::“”iis
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and CD in a counterclockwise directfoa. L 0s8 =
RBc=L=~

-0.01 and RCD = - 0.01. q-ne fixed-e~~ moments due to de-

flection of C are therefore: “
,-

Li= =“. & 6KER =’~- 6X0,0025X2900b~OOiO”.CIl= _ ;65009——
ac .~~ .= - 2p-Ct 1.19Z5

*FCD = &
‘DC

= 3650.9 in.-lb,

In figure 16 these moments have been added %elow the
fixed-end moments caused by the loads. The remainder of
the solution is similar to that whea there is no deflec-
tion of the supports, and is recorded in.fi~re 16. The
bending mone~t at C is found to be 5,369,3 in.-lb’ and
that a% D, lt505.4in.-lb*, both with the lower fibers

. 3fi coz2pre66ion~ Yhe extended three-nonent equation. also
gives values of 5,369-3 and 1,505,4 in,-lb. for the rlonents
at C, and D, respectively.

●

. . .

DUE TO JOINT T3UNSLATION

~en. a rigid joint truss is subjected. to a system of
external loads, the individual members are stressed by ax-
ial tension or compression. As a result, each mem%er is
elongated or shortened by an amount equal %0 PL/~s This
change in length of the members .ca~ses the displacement of
the joints of the structure, with the result that bendiag
moments are developed at the ends of the mem%ers, The val-
U6 ,of R for eack memter can be determined hy the use of
a Williot diagram or the cotangent formulas as explained
in Art. 11-3 of reference 8. With R known, the fixed--
end moments of each mem~er can be found by the use of equa-
tion (7). These fixed-end noments oa.n be balanced and dis-
tributed in the ~s~al manner unt~l the desired degree of
accuracy of the secondary moments is obtained,

An example of this type of ~alysis wi,thout cons~der-
tng the effect of axial load, except for determining the
change in length of each members is given in Thompson and
Cutleris discussion of professor Cross! paper. (See ref-
erence 2.) Yhe net-hod is the same if axial load is con-
sidered except that graphs 1 to XI would be used in detew-
-aining the various factors and fixed-end mOmQnts*
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!lH?RECTANGULAR BEN2
.-.. -,. . .-;.. .+ . .. . . . . ..... .

~“i~re i“? shows a si~gle-siory””rectan~lar b~zii sUb-
jected to a side load S. If the two columns are consid-
ered free bodies, they are acted on by axial loads! shears~
and ezui mone.nts, as shown in figure 18. Part of the side
load S is carried ,as shear in ccJlumD AB and the r=st
in column CD ● Hence s~ + s~ = s. Taking moments a%out.-..
A.: —.

. ...... ,=_.--...... -,<. -e 7- +---.— . .—.” -. :--

or ~.=~~f=b(Sx + S2) = Sh
... r- --..—. .....-.-”=...:.:++...—

This is known as the ‘tbent equationn and states that
the..sum-”of the moments at the top and bottom of the columns
of a story is equal to ‘the shear on the story times the
story height, This is an equation of equilibriti that
must be “satisfi~d in the analysis of all rectangular bents-
The equation is valid for a bent of any number of columns
and for any story of a multistory lent, In all cases the
load S is the total shear on the story under considera-
tion. -“---“ ““ - ““:””””~: .,. ...,.W.,_...~_ :-..,---......----..4—..-.-...——.--...-..——,.. .-

In order to analyze a rectangular bent by moment 5is-
tributi.cm it is first assumed that the horizontal “beans
are infinitely stiff. In this condition the structure is
alloned to deflect laterally until the sum of the resisi-
ing noti’cutsat the. ends of the columns becomes equal to
the ~roduct of the shear a~d the story height.

In order to deternine the effect of the deflection
ii is necessary to lknow how the resisting moments are di-
vided among “the colnmns~ As the columns are coimected. “by
rigid .Qorizont&l bemls, the def~ection~ of all tha columns
are equal. (The change in length of the horizontal beams
due to axial load is neg~igi~le when compared with the de-
flection of the columns due to bending-) With the hori-
zontal beams assumed infinitely sttff, equatiori (’7)may be
applie~ to find the monents at the ends ~f the Col-amns
caused by the deflection. !phis gives: .- ,

:JtOp = ‘tbot$om =
EI~ for each column.

., f.(213- @. .,,.._ ., ., .,. .....-..:..

As” E, L, and 8 are the same four all ”colu=~s,””””%~e
. ,ti.. . ...... .........
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resisting moment is seen to %0 divided. tn proportion to
1/(29 - a). Therefore, the first step tn the analysis of
a rectangular bent is to divide the equtlibrant of the
story moment along the columus of each story in proportion
to the value of I/(2~ - a) for eaeh column. These bal-
ancing moments are divided equally between the top anti
bottom of each column.

This ttivision of”moments satisfies the bent equatio=
hut leaves unbalanced moments at the joints of the struc-
ture8 If there are:any loads between panel points, the
fixed-end moments caused by these also contribute to the
unbalanced moments at the joints. In or~er to equilibrate
the unbalanced mOments it iS necessary to assume that the
horizontal beams lose their infinite rf.gidity and allOW
the joints to rotate until sufficien~ resisting moments
are created. The balancing moments are distributed in
proportion to the distribution factors of th-e menbers~ and
nomen$s are carrie& over to the far ends of the members-
During this step it is necessary to assume that the jOints
are restrained from translation in order that the e~res-
sions for distritition and carry-over factors may be aw
plied. After these balancing and carrpover moments are
applied, the bent equation is no longer satisfied-t There-
fors, the horizontal beans are again assumed infinitely
stiff and the structure again allowed to deflect until the
‘bent equation is again satisfied The operations are con-
tinued until the error i~ the bent equatioa and the nn- “-
llalance~ moments at the joi,n~s are s~ll enough to neg-
lect.

EXAMPLE 0)? SIiiGLE-SToRY RECTANGUIz~ BENT

~i~re 19 shows ~ ~i~gle-story rect~n~ula,r _bOZl%SUb-
jected to a side load. The dimensions are given in the
figure. 1A3 = Icn = 213Ga It is assumed that L/j = o
for BG and CD and L/j = 2.5 for column AB. Al-
though the side ~oad WilZ put axial compression in AE
and BC and tension i= DC, the exact amounts-of ihese
loads are ‘inkno~ until the moments at tke ends of the
C01UEN2S are determined. Z= the usual case the amouazs of
these axial loads are negligible, the Only axial 10adS Of
large ma&itud.e being due to ~ertica~ loads on the beat.
HoweverS for accurate analysis the structure may be ana-
lyzed a second tiae, usi,~g the mOments fo~d in the first
analysis to correct the axial loads in the columns- The
problem given here i9 to be considered merely as an exam-
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ple to- illustrate the use of the system and not as illue~
tra’tiyp of conditions that might be met b actu,ql d.eeign.

. As Z is _th”6sane for both col-uzizis,%he story”mox6nt
equilibant is. divided between the. columns in. -i.nvf3rq8pro-
portion to 2P M ct. The value of 2P - a may be read
from g-~aph XI. It is found that

,.. ‘-:-~AB : ii~D = 1 : 1,123
.-: ..-. .. .... ----- m? ----- ..... .! ....-..W .—.-.. .,=-:.

That iS, 1/(1 +“-1,23) = 47.2 percent of the story
uoment .is resis-ted by mometits at the ends of A–B .an(i52*8
perceut by moments at the ends of CD ● La therno~en%s a~
the top and %ottom of each col~ are equl, the 8qUt1i-
brant of the-story mo”m~ni iS df.vi.ded 23.6 perc”ent to “the
top and 23.6 percent to the bottom of AB and 26,4 per-
cent t-o“the tup and 26,4 percent. to the bottom of CD ●

The BLe&r load ig 180 pounds” and the ~ato”ryhei”gh”t$0
feet; therefore “the story noment ia -180 X 20 = - 3,600
lb.-ft. The equiiillrant of “this, 3r600 Ib=--fta” ~~ ~~i
vfded 3,600 X 23,6 percerit = 850 lb.-ft. to t=e top atid
850 1%.-ft. to the bottom of AB. Similarly 3,600 X 26.4
percent = 950 lb--ft, is distributed to the top and 950
lbc-ft~ to -the botton of C3 ,. ..

This leaves an unbalanced moment af 8!50 lb~-ft. at
joint ~. and 950”lb.-fta at joiht C. 3GToFG ““thO-tiecan
be lalanced., the di~tri~tioa f-actors of the members mls%
be determined. I/L la constant for all the menbers, so
the distribution factors are proportional to the coeffi-
cients found in graph 11, These coefficients are 1~00
for BC and CD anLO.’772 for AB. Therefore the dis-
tribution factors for joint s are 04772/~J+ 0.7~2) =
43.5 pzY:~en$ for A~- m-d. 56”.5 jjercent for 3C. At joint
c the”’’~istr~bution factorg are 50 percent for each of the
members. The carry-over factorg of 0.5 for BC and CD
and 0.731 for AB ‘are fou~d ia gr~~h 1.

...Ak..._— “ ..-”’..... . . ;,.:..=.,= ..- ....q. .....=- ?~.-.-. . .J“-. ----

T!he balancing tioment~ at E are therGfoio” -850 X+3.5
percall”t = -370 Ib,-fts to BA and =-850 X 56,5 = 9-480
ltc-ft; to “3C. At C the balancing moments ate -950 X
50 perce”tit = -47’5 Zb,-fta tO both CB and CD. -370 x

0,?31 := ?271 l%;-ft. are carried over to A, -475x 0,5
~ -23a ”’11).-ft, aro carried over to D and E, and -480
x 0,5 :*E?49 Ibo.-ft,. are carried over t.~. C. ., ,:

.- . ::“:::: T?:“:.:“.::;..7;: :--
r

.-

.-
. .-.

.

..+

.

.
.&

—

.

,

.

.. —A

.

.

..



N,A. C,A, Technical Note No. 534 31

If the moments on the ends of the oolumns are added,
it will %8 foun”d that the sum is no longer equal to 3,600
lbc-ft , The values - 370 - 271 - 475 - 238 = -1,354 11),-
.f%. have been added to the columns since the bent equa%ton
was satisfied. This quantity, -1,354 lb,-ft., is called
AM and is found by totaling all the balancing moments and
carry-over moments that have been added to the columns
since the last time the bent equation was satisfied.

The quantity AM is treated exactly the ~ame as tho
original story moment. The equilibrant - AM is divided
among the columns in proportion to I/(2~ - ~) , and the
process continued until the unbalanced moments at tho
joints and the unbalanced story moment are small enough to
be neglected- —

In figure 19 four cycles have been completed. The
resulting moments are MA = 910 lb.-ft. , MB = 800 Lb.-ft, ,
Mc = 809 lb,-ft.~ and MD = 1,079 lb,-ft, Yhe moments

acting on the columns are all positive, and their tctal is
3,598 lb.-ftc& The error of 2 lb,-ft, in the story moment
is negligible. -

This same bent was analyzed in reference 4, assumin~
no axial loarl in the membersc The resu-lts in this caso
wero ~dA = MD = 969 lb.-ft. and MB = MC = 831 lbs-ft.

Examples of multistoried bents ~rid bents subjeoted to
unsymmetrical vertical loads have been given in referenoe
4, When axial load is included, the only difference is
the use of graphs I to Xi in determining the various fac-
tors and fixed-end moments~ The principles involved in
these two cases are the same as those in the single-story
bent, and if these are thoroughly understood, there should
be no difficulty in applying them to the more complex
structures,

APPLICATION TO AIRpLANE FUSELAGE TRUSS

Pigure 20 shows the centraz portion of the side trus6

of an airplane fuselage. !Che structure has been analyz6d
for the various conditions of loading required hy the Ile-
partment of Commerce, and the members have been selected,
assuming a restrair~t cooffici.ent of 2, with the assumption
that each member is subjected to pure axial load.
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As .is usual~y the case in airplane fuselage t~sses,

-.—
,

however~ some of’ the members have side lo~ds”ap~li.ad be-
twoon the panel poi”nts; arid in the Iandi.?g con~-~tions
there “~rq c“oncefitrate~ moments applied at the points where
tho chassis members join-the fuselage, The effect of these
oondittons will. 3s deternklned by moment, distribution and
the mar-gins“of saf”~ty-.comptitedo-If d~gired, the aocondary
moments due to .joiat tran~lation may be included tn the
fi.xod-enti mornents.- These will %6 small, however, and tho
refinement hardly justifies the amount of labor involved
in com]~utiag ~hem”~” ~hey are not included in the gxgmplet

. ,..-. .
A:? “most of $~~ ‘rne~~qrs”in t~~-’”cg~~r~l”-part ~~ “the fu-

selago.axe designg.d,for .threornpoint landing, this condi-
tion 0:: loading will be used in the example, The load
factor for this condition is 5.85,

Table A gives the physical properties of each mem-
ber and the axial load in the three-point ,landing condf-
tion, The values of _L/j have been computed and record-
ed In ~;ho“table, the letter fcllo..wi.ngthe figure f.ndfcat-
ing tension or compression, and the carr”y-aver and stiffn-
ess factors have been determined from graphs I and lS~
The distribution factors have been computed and recorded
on the -figure at each joint, and the carry-over factors
have been written on each nem%er.,,

111”this airplane, four of the items of loading are
attachfid,to t“he longerons between panel points. Although
the weights are ap~lied at an angleof 14° t.o the thrust
axis in the three-”point landing conditio~, only the compo-
nents cif load perp~ndiou~ar to–the member; are-used in “
figuring the fixed-ead moments, The compon-ents parallel
to the )5G”mbers hav”e a slight effect up~~ the axial loads,
hut this is sgall enough to be neglected. The loads that
contribute to the fixed-end moments are:

29”“BaggagA ~

._

‘~ a “concentrated 3.0-a-d””of100 pounds ap-
#lied on 5L-6L, 14 inch6s from 5L.

3, Pas~enger~ --- two concentrated loads O? 364.
pounds eich., one applied on 3L-4L, 27 inches
from 3-L and the other applied on 4L-5L, 2.1...- inches from 4L..-

,._ ,-
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4. I?loor load -- a uniformly distributed load of
0.’769 pound per inch extending from 3L to 5L.

The loads given are the basic loads, In order to
find the desigu loads they must be mu~tiplied by half tho
load factor of 5.85. (Half the factor is used as there
are two side trusses$ each carrying half the load,) The
fixed-end. moments have %eeu computed, using the appropri-
ei’%eformulas and curves, and the results recorded on fig-
ure 20 at the ends of members 2V-4U, 3L-4L, 4L-5L, and
GL- 6L.

In addition to these fixed-end moments there are two
concentrated moments applied to the fuselage by the chas-
sis. A counterclockwise moment of 7,520 in~-lbo is ap-
plied at 3L, and a counterclockwise moment of 11$160 in--
lb- is applied at 4LC. These moments maybe considered as
fixed-end moments on the chassis members. A cotititerclock-
wise moment applied to a joiut means a clockwise moment
acting o= the end of the member; so both of the ahOvO mo-
nents are positiveg They are treated exactly the same as
the other fixed-end moments at the joints. When these
moments were computed in the chassis analysis of the air-
plane, it was as,sumed that the fuselage was a rigid, un-
yielding structure. This is not a true assumption as the
fuselage joint8 are capable of rotation to a slight de-
gree; hence the actual moments applied at 3L and 4L
would probably be somewhat loss than those given~ A pr6-
cise solution would involve a very complicated analysis
as the chassis presents a three-dimensional problems with
the members capable of carrying torsion as well as bend-
ing; so no modification will be attempted here. The ~a~~

ues given are probably very close to the actual values>
and the error is believed to be snall-

Joints 2U, 2L, 7U, and ‘7L have been assumed rigidlY
supported This is obviously an erroneous assumption, but

- the error involved is small~ Joints 2U and 2L are
where the engine mount is attached, Since the structure
forward of these joints is relatively rigid, the assump-
tion of complete rigidity is probably nearly correct- Al-
though in practtce it night be necessary to analyze the
entire structure aft of 2U-2L, for the purpose of this
example it seems desirable to consider only that portion
forward of 7V-7L. To do this, some assumption musi be
made at joints ‘i’Uand 7L. The joints might have been as-
sumed pinned with as much justification as assuming rigid
joints, or they might have been assumed as 50 percent rig-
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id, as advocated by Eruhn in reference 6. !l?helatter meth-
od appears to be the most a.courate, but it wduld necessitate
a new set of curves for stiffness facto~~ and so is hardly
pract%cal. Owing to the assumption adopted, the momenta
found in member~ 6U-7U, 6U-’7XJ,and 6L-7L should not be
expected to be as accurate as those farther forward, as the
effeot of an error at any joint is more noticeable on the
members coming tato that Join% than on memberfs that are
farther remove~,

. . —

.

.

-.
-,

W’lth the fixed-end moments, distribution fa~tore~ and
oarry-over factors determined, the prooess of balano~ng
the moments may be commenced, In the figure, the joints
have been balanced in the obder of the magnitude of their
unbalanced mf$ments, and the carry-over moments recorded as
soon aiia joint is balanced, as this method gives the most
rapid convergence of results, Tho o!rder of balancing was
4L, 3L,, 5U, 6L, 5L, 4U, 6U, 4L, 5U, 5L, 6U, 4US 4L~ 5US 3LJ
6L, and 5L. As soon as a joint was balanced for the Zast
time, no more moments were carried over to it, in order

,.

that the cheek of 2M = O for each joint night be ob-
tained, The. totals of the moments at the joints are re-
corded in the figure, The moments obtained by applying
the Hardy Cross method to this truss wtthout corroating
for the effect of axial loads are shown in referenoe~ 4.— —-----—- —-and 5. .-–—– .......----.- .—+, ;..-. . . -- .

..- “.-.

..
:—. . --- ----- :.

. . -d

–<

., =.

.-
—— .—.—+

—.+
....5
_ .—

.

-=r-.—
.3

...-

. .
z

-.
--.

..-
.-, .- d



N,A. C,A. Technical Note No. 534 35

APPENDIX I

Definitions

1. Fixed-End Moments: The moments that ~xist at the
ends of a loaded member when those ends are rigidly fixed
against rotation are called the fixed-end moments of that
member.

2. Stiffness ~actors: A number proportional to the
couple that must ‘be applied at one end of a member to
cause unit rotation of that end, both ends of the member
being assumed to have no movement of translation, is called
the stiffness factor of that member- The stiffness factor
will dep”end on the degree of restraint of the opposite end
of the member from that at which the couple is applied.
In this paper two such cases are considered, that in which
the far end is fixed against rotatioa and that in which
the far end is free to rotate.

3. “Distribution Factor: If a moment is applied at a
joint where two or more members are rigidly connected, the
distribution factor of each member is the percentage of the
applied moment that is absorbed by that member, The dis-
tribution factors of the members at a joint are proportion-
al to the stiffness factors of those members. The sum of
the distribution factors of the members at any joint must
equal unity.

4. Carry-Over Factor: If a beam is simply supported
at one end and fixed at the other, and a moment is applied
at the simply supported end, a moment is developed at the
fixed end. The carry-over factor is the ratio of the mo-
ment at the fixed end to that at the simply supported end.
Yor a member without axial load and with constant moment
of inertia, the carry-over factor is O*5.

5* SiRn Convention: —

1) A clockwise moment acting on the end of a mem-
ber is positive. Consequently, a clockwise moment aoting
on a joint is negative. This is in agreement with the
convention used in reference 2 at the left end of a member
but opposite to that convention for the right end of a
member ● Great care nust be taken to interpret corroc~lY
the- signs of bending moments obtained in the moment-dis-
tribution analysis before proceeding to the determina’ciOn

-.
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of bending moment between th~” ends of a member
iag margins of safety.

. .... T

.- ..+., A
..< ~F-=

-..-—
-.2.5.. ...-,——

.. -.- ,:5*

.—
.-.34

. . .,. -

. . - .=

-?:-? -.
02?comput- .

-..:.

2) Upward forces and deflections are positive,
and hence in agreement with the corresponding conve~tion iu
reference lM ,,.— ...

3) Clockwise rotations of the straight line ~oin-
ing the ends of a member are positivo, the ”reverse-of-tkQ

..—.—

convontlon used in reference 1. for..sloyo.
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. =APPZ~bIX Xi””’‘“:. *...

Mo~en”t-Area Proof -”o~-”CarxyrnO~erF~c”tor Yo~~la-”” ‘“’

.

The principle of moment areas states that th~ dofloo-
tion of any point llaf’on a beam from tho tangent at any
other point ‘htl is equal to the moment about ‘tal*of the
area under the M/33I diagram between llaltand “bl;- In
figure 1 the tangent at B is horizontal; so the defloc-
tton of A with respect to this tangent is zero, Hence
the moment about A of the area under the M/IZI diagram
of the beam is zeros The expression for moment, using
the momen%-distri’bution convention of signs, is:

— -.. -.~: ;...

‘MB - “MA COS %

M = ___.-.J-.J Sj,n~
z“

+ MA COS -

sin - 3
3 :.”.:...:-,..

i~”the &isfance from “A.where k“’”’”. ‘“’Ihe”-tiorneri-i-=O#the aiea
under tho M/EX curve is therefore

. . ~=
~~ o/LMx d,X =O

.
The value of M is substituted and the expression
grated, Nakag use of the formul~s ..... L.

.:..
“ii-C-~”x ~~n - ax s ~~a (~~~-~”- ~

)

-“%.-%:”’”

J .3
Cos -

.-. .J
.. , -. ~,.--.; -...- -7 ..- u;..-

--T}‘: ‘~ ; ~-’ ..,:.:

““cf x Cos ;
)ax = Cja (co$ ~+ Z ~tn”Z--. jil,. .......--... -,
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The above integral reduces to

MB ‘ CL

Mii=+m

which is the same as that derived
tions

APPENDIX S11

by the three-moment equa-

Moment-Area Proof of Sti.ffness-Yactor Formula

The rotation in radians of any point on a beam from
the tangeut at any
the M/Et diagram
the tangent at B
M/EI curve of the
The expression for

other point is equal to the area under
between the two points, In figure 1
is horizontal; so the area under the
beam gives the absoluto rotation of A,
moment is:

.

d

where x is the distance from A, The area under the
M/EI curve is:

Substttutiing the value of M and integrating, making use
of the formulas

CJsin$dx=-Cjcos~

gives the expression:
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!Ihismizybe written:
-- -

-. -..-
. .

which is the same value as was found by using the Newell
formula for slope,

APPENDIX IV
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A c’omtinuous beam ABC has fixed ends at A and Cl,
A clockwiao moment M is applied at.tho center support
B, As tho carry-over factor is known to be - ~, IIWing

213
tho thrce~momen% equat:ioa convention of signs, it is known

that :JA == - ~)@~al ‘~ M-B and MC”= “ —
..(2~/ P2~

~f+B● The threo-

moment equation ~’or spans 1 and 2 is:
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showing that in this fipecialcase tho moment applied at B

is distributed in proportion to the value of ; ~ys

of each member- (See equation (3), )

APPENDIX v

Carry-Over Yactor for Axial Tension

Assume that the beam of figure 1 is subjected to ax-
ial tension, A is free to rotate, but restrained from
transverse motion. A given moment MA is applied at A
and it
moment
is;

Where

is desired to find the magnitu-de of the resisting
a% B, ]~B# The three-moment equatio~ for this beam

this gives

MAL ah
—-— —

I
+ 2M3 (L+)=0

whence
ah

~B=- ‘- k#A
2$h

which is the same expression as that for oonpression ex-
eept that a and @ have been changed to ah and @h,
respecti,vely~

JiPPENDIX VI

Fixed-End Moments when ?j= O. (See reference 3, P, 85e)

Note: h the moments given in the following sketches the
convention of signs is the same as that used in the

three-moment equations bY Niles and Newell- For’ the con-
vention used in moment distribution, the sigm of the mo-
ments given at the right end must be changed.
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TABLE A

Physical Properties of Fuselago Yruss Members

Size

(a)

1~ XO.035
4

1 x ,035
1 x .035

1; x .035

1 x .035

1* x .035

1~ x .035

1 x .035
1 x .035

1 x .035

& x ,035

+ x ,035

1$ x .049

1* x ;049

1 x .035
‘7

“.5 x ,035

.--..—_

.--—-

Length

-%nii-
57,3

48s0
36,1

50.0

39.3

39s0

26.0

36.0
51,0

53.’7

56.6

58.3

59.9

54.0

64.9

57,0

68.7

.-—-——

——.

Ax5al
load

---r6;
2815

-2630
“3950

“4070

-21Z0

-4325

8725

4355
3895

-1870

1265

4’710

0-2965

4295

-845

220

105

.——

.-——

~

s

—---
3,59T

4.llC
3,79C

4.44C

3,01C

3,03C

2.87T

3.9?T
5,32T

3a88C

2,80T

5s56T

3.31C

3. 60!i?

3.15C

I,74T

1.45T

--—.

42

coeffi-
1
x lti

cien%
-——-—.L————

I

+ ~~~— .—

0,310 1.371 5.9,03

3.27 ● 240 .619
1s823 .391 1,340

230740 .040 .14Z

●925 ● 652

,936 .647

2.052

4.093 ~

,357 1.250 11.861

.289 1a442

.220 la721
2*5O ,352

s362 1,239

.208 1.773

4.955
4.174

.811

3.901

5.419

1.320
I

s565 I 3,149
!

,300 1,375 \ 8.502

1.004 ● 614

.435 1,098

1,1’?1

1.5’72

.453 1.069 \ 1.270

L 1—— -—-— -————
(a)

Diameter and thickness, inches.
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Axial compression

o
1*O
2,0
2.5
3.0
3,5
4,0
4,5

- .——-.

.——---

0
1.0
2.0
3,0”
4.0
5.0
6.0.
-— —-—

0,50000
,52640
,62629
.’7309’7
●91893

1,3157’4
2,56030

0 ● 50000
.47625
.41?3?
,34’768
,28419
,23308
.19405

1.00000
●96628
.85904
,7’7193
c65605
.50201
●29388
.00479

.-- —.. — --—.-

Ax5.al tension

(-l,75000
.69852
#52210
●35947
.10206

-.36705
-1.6294

“

-—--—- -.——

1.0000
1,03.70
1.0737
1.1226
1.1915
1.2903
1.4364
1.6691

--——.. -—

—

1.0000 0.7500
1.0329 ,7986
1,1268 .9305
1.2703 1.1167
1.4492 1.3321
1’6519 1.5622
1.87’06 1*7999

1.0000
.9837
.9392
.87’62
.8066
.7364
,6716



.

0
1,0
2.0
2.5
3.0
3,5
4.0
495
——- —.

.—

12,000
11*796
1102’76
10,690
10.071
~,301
8.338
‘7.190

.—— - ——..

Axial compression

30.000
29.396
27.65!5
26.291
24.660
22.436
19.819
16,’766

-————— -—
.

Axial tension
—-~~
o
1,0
2.0
3.0
4.0
5*O
6.0

12.000 20.000
12.198 30.577
12. ??’3 32.221

“13.695 34.885
14.888 38.370
16.297 42.523
17.864 47.167

20.000
19.7’13
18,’755
18.0Z5
17.072
25.889
Z4. +KL7
12.588

——— —--- —

20.000
20.294
21.178
22.541
2~,329
26.431
28.743

—.--— —-— —

8,000
7.832
7.322
6.930
6.441
5.846
5.127 .
4.301

8,000
8.165
8.657
9.448

10.504
11.790”
13.256

—.



, .

~

J—

o

1.0
2.0
2.5

3.0

3.5

4.0

4.5

0

1.()

2.0

3.0

4.0

5.0
6.0

—

: = 0“1

l.cooo

1.0065

1.0X4
1.0431
1.0657
1.0964
1.X4.2
1.a18

1.0000
.995’3
.876?
.95J,4
.9%
.88?0
.8s0

a
- = 0.2
II

1,ooOo
1.0118

1.0491
1-0807
1.1242
1.1841

1.%720
1.3987

1.0000
.988.5

.9579

.9127

.8595
,8039
.7493

WE? D

Fixe&llmlibment Coefficients
Concentrated Lo& at lmypoint on tie 3pan

: = 0.3
A

l.oc$)o

1.0160
1.0679

1,1122

1.1734
1.%04

1.3888
1.5805

1.0030
● 8839
.9429
.8828
.8140
.7441
.6778

,

t
I

Axial ccmpresdon

1:0000 1.0000 l*OCQO

1.0131 1.021.6 1.0230

L0824 1.0926 1.0983

1.1368 1.1544 1.1646

1.2135 1.2420 1.2580

1.32% 1.3686 1.3965

1.4863 1.54304 1.6075

1.7372 1.8600 1.9420

Axial tension

1.Oom l.o& l.m
.$lw.2 .9798 .9775
.833.6 .9241 .9206
.8611 , .8467 .8399

w

1

l.ti
1.0222

1.0994

1.1670

1.z&16

1.4051

1.6255

1.9780

1.0000

.9805

.9198

.8400

.7537

.673.7

.5992

a
-= 0.8
L

1.0000

1.2315

1.0961

1.161’7

1.2557’

1.3960

1.6136

1.9399

l.o(io

.“9825

.9231

.8469

.?’656

.6881

.621.9

a
-= 0.9~

loom

1.0172

1.0884

1.M87

1.2356

1.3669

1.5724

1.8082

1.0000

.9654

.8320

.8612

.7887

.721.4

.6627

I



. . . . . .

TABLEE

Fixed-EndlIomentCoefficients
UniformlyDistributedLoad Over Part of 8pan

Axial compressio~
.—.
o
1.0
~.-j

2.5
3.0
3.5
4.0
4.5

-m6im—
1.0095
1.0329
1.0536
1.0824
1.1210
1.1780
1.● 2573

m6m’--
1●0114
1.0453
1.0746
1.1152
1.1706
1.2526
1.3708

—.—
1.0000

1.0133
1.0555
1.0915
1.1420
1.2117
1.3153
1.4684

.-—.
1.0000
1.0148
1.0370
1.1044
1.1626
1.2436
1.3648
1.5470.—

Ciim
1.0123
1.0681
1.15CQ
1.2254
1.3575
1.5569
1.8860—-

.— —
1.0000
1.0085
1.0922
1.1554
1.24W
1.3815
1.5939
1.9383—.—

1,0000
1.0053
1.01’74
1.0282
1.0438
1.0637
1.0935
1.1320

1.0000 i 1.0000 1.0000
~*,2135

1.0970
1.1625

1.2551
1.3925
1.602S
1.9376—. .—

1.0180
1.0963
1.1620
1.2552
1.3961
1.6133
1.9646

1.0215
1.0976
1.1643
1.2585
1.3994
1.6161
1.9635

Axial tension

o
1.0

2.0
3.“0
4.0
5.0
6.0

1.Oocx)
.9895
.9611
.9192
.8708
.8204
.7697

1.0000 i1.0000 1.0000 11.0000I1.0000

I._
1.0000 1.0000
.975Q .97!IL
.9214’ .S217
.8427 .8428
.7579 .7571.
.6772 .6752
.6060 .6023

—

1,0000
.9939

.9840

.9678

.9461

.9234

.8993

1.0000
.99ZI.
.9717
.9407
,903’7
.8641
.8248 1

.9877 .9864

.9528 .9470

.w~ .8’315

.8459 .8282

.7867 .7640

.7304 .7033

.9860

.9408

.8656

.7931

.7321

.6756

.9851
● 9267
.8539
.7?72
.7048
.6421

.979Z

.9225

.8470
,7644

.6746

.6190

I 1

,

1

:,.
,
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Figure 1.

Figure 2.

.

b

rigs. 1,2,3,4

--
.-

Nigure 3.

A B c I)

.*

-4500 +9355 -9355 +9355

+

-9355 +4500
O -4855 0 0 +X55 o
0 0 -3549 +3549 o 0

-4500 45U0 -12,904 +12,904 -4500 +4503

Figure 4.
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Figure 5.

Figure 6.

+JQ+3’-P
Figure 7.

Figs. 5,e,7

.

.-

-. —

—

..._ .-
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J+4+3’-P
Figure 8.

Figure 9,

Figs. 8,9,10

—.

.
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w= 10 lb./in.

~

100 lb. 500 lb.

\
*

~
all 32!1 48!! 8@!

A B c D

Figure 11.

s = O.1O2Q6 R s = 0.65605
c = 0.9189 .

A B“ ,3 = .13462

+5300 I-6989.8 .v1834.6

-4@=-
I

==1==- +611G● 9

“

c = 0.91893
D = .865381

-2605.9 -43748.8

w

-3511.0 -3226.4

-

-6116.9 -1-522.4

—

Figure 13, .,



N.A.C.A. Technical Note No. 534 Figse 14,15,16
A C=O.9189 3 C=O.9189 c C=0,9189

ID =0 D = 1.001 ~D=.1346~=.86541 ID=.5Q b=,~l . D,!
+1000 ./

o -1000 /

-918.9 0 1
+1 23.71+’795.2

+730.6 o
&3

o ~ -335.7 -335T7
445.

+265*9 o
-133.5

-122.7
~16g.O +106.2

-122.7

~ 97.6 0

0 -44.8 I - %.8
+

+ 3$.7
19.8

Total after 9 cycles -727., +727.5 -5K)3.2

Total after 18 cycles -7Z4.l -528.8
#

Three-mom. equation -529.1

B’i~e 14.

1“42 314

Figure 15.

S=O.1O2X36 c S=0.65605
C=O.91893 C=O.91893

A 3 D=.13462 D=.86538 D

+5000 -69~9.8 +4834.6 -2605.4 +3748.8
-3650.9 -3650.9 3650.9
+5640.7

+365U.9

+

-5894.3

==1==~ +5364.3 ~!5564.3 +1505.4

Figure 16.

.-
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I?igure 17.

Zigs. 17,18,19

l’igure 18.

s,

.,

c
c
a
-1

>Lgc

1+

c
T

?

.

.

.

10 t :

B G
=*335, C=.5” D=.5 ‘“

in

I
-46
- 29 4

-47 ,/
-240 Q
- 59
-23
-3
-2

-891

—180 lb.

I
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